

SITC 2014

Enhancing the IQ of CAR T Cells

Michael Jensen, MD Sinegal Endowed Professor of Pediatrics, UWSOM Director, Ben Towne Center for Childhood Cancer Research

DEPARTMENT OF BIOENGINEERING

UNIVERSITY of WASHINGTON

Jensen COI Disclosure:

-scientific co-founder of Juno Therapeutics, Inc. (JTI)
-equity holder in JTI
-inventor of IP licensed to JTI
-SAB/consultant to JTI

CAR T Cell Therapy Version 1.1-Empiric Designs, Trial and Error, Luck

Synthetic Biology:

-The re-design of existing, natural biological systems for useful purposes.

or

-The design and construction of new orthogonal biological parts, devices, and systems. (from SyntheticBiology.org)

Synthetic Biology's (Genetic) Engineering Approach-

Designing new molecular parts, device modules, circuits, and networks:

- modeling the designed systems
 & predicting their properties
 - making & testing the designs
- updating our understanding from the model/test agreement

Vocabulary of Synthetic Biologists-

PARTS- DNA sequences encoding some component of the genetic machinery. (e.g. promoter, cDNA, riboswitch, transcription regulator, IRES, etc)

DEVICES- A group of parts that work together to perform a specific function. (exp. small molecule regulated promoter for controlled transgene expression)

CHASSIS- Organism (host) containing the device (s)

Current State: Polyclonal T Cells/ **Constitutively Expressed CAR/No Suicide Mechanism**

I. FORMULATING CAR T CELL PRODUCTS OF DEFINED COMPOSITION FOR IMPROVED REPRODUCIBLE ENGRAFTMENT, EFFICACY, AND SAFETY

MANUFACTURING CAR T CELL PRODUCTS OF DEFINED COMPOSITION:

LEUKAPHERESIS/PBMC

DAY 1 ACTIVATION OF T CELLS (ANTI-CD3/CD28 BEADS)

EXPANSION IN CYTOKINES Mid-Process Bead Removal/ EGFRt Positive Selection

DAY 1 PURIFICATION OF CD4 and CD8 SUBSETS

DAY 14-21 CRYOPRESERVATION

Defined Composition CAR T Cell Product Uniformity Compared to Unformulated Products

Product CD4+

Phenotype of Expanded Defined Composition CD19CAR T Cell Products At Time of Cryopreservation (Day 11-18):

Superior In Vivo Anti-tumor Activity of Defined Composition CD19CAR T Cell Products (1:1 CD4/CD8 Cell Dose, 100% CAR+)

(Compared to Undefined or Single Parameter Selected Products)

CURRENT STATE: Version 2.0 (SCRI PLAT-02)

Parts List-

EF1α-promoter T2A Linker

PLAT-02 Signaling domain CD19 scFv Transduction Spacer IgG1 murine monoclonal marker domain Devices- G3 SIN Lenti EF1 2nd gen IgG4-VH linker VL CD28tm 41BB CD37 T2A huEGFRt hinge(S) Leader sequence

Chassis- Defined combinations of T cell subsets

Pediatric Leukemia CD19CAR Adoptive Therapy Trials

Site	Defined Cells	Vector	scFv	ECD Spacer	Co-stim	Selection/ Suicide
MSKCC	No	Retro	SJ251	CD28partial	CD28	No/No
СНОР	No	Lenti	FMC63	CD8hinge	4-1BB	No/No
NCI	No	Retro	FMC63		CD28	No/No
Baylor	EBV	Retro	FMC63	Full IgG1	CD28	No/No
SCRI	CD4:CD8	Lenti	FMC63	IgG4hinge	4-1BB	Yes/Yes

PLAT-02: A Phase 1/2 Trial of Defined Composition CD19CAR T Cell Adoptive Therapy For Refractory Relapsed and Post-HSCT Recurrent Pediatric ALL

Advanced Lymphocyte Engineering

PLAT-02: Post alloHSCT Patient Profile

Cohort	Patient ID	Age (y)	Relapse#	Amount of disease in BM at enrollment by MPF	Current progress in study/off study
1A	14602-S01	21	2	90	In long term follow up
1A	14602-S02	22	2	0.4	In long term follow up
1A	14602-S03	21	2	90	In long term follow up
1A	14602-S04	11	2	0.04	In long term follow up
1A	14602-S05	19	2	2	In long term follow up
1A	14602-S06	4	2	54	D+42
1B	14602-S07	1	2	69	D+21
1B	14602-S08	23	1	98.6	D+7
1B	14602-S09	6	2	30	Pre T cell infusion
TBD	14602-S10	17	2	1.94	Pre T cell infusion
TBD	14602-S11	15	2	23	Pre T cell infusion
TBD	14602-S12	12	3	0.04	Pre T cell infusion

Update 10-18-2014: 15 pts enrolled, 11 pts infused S09 and S10 Infused S09 PR after first dose, received second dose, no response. S10/S11 MRD- CR

PLAT-02:Post-alloHSCT ALL Relapse/Pt Derived Donor Origin T Cells CD4/CD8 1:1 AntiCD19CAR(4-1BBzeta)-EGFRt Dose 250,000 cells/kg of CD4 product and CD8 product

Peripheral Blood Day +14:

Advanced Lymphocyte Engineering

PLAT-02: Remission Duration (Intent to Treat/Post-HSCT Relapse) Complete Response (MRD-neg by MPF)→

PLAT-02: Magnitude and Duration of CAR/EGFRt⁺ T Cell Persistence

Summary I:

- Feasible (100% based on intent to treat) to manufacture defined composition products.
- 2. Bioactive against ALL, high peak engraftment, duration of engraftment is heterogeneous.
- 3. Products have high frequencies of CD62L/CD28/CD27⁺ T Cells.

Time

CURRENT STATE: Version 2.0 (JCAR14, 17)

Parts List-

EF1α-promoter T2A Linker

PLAT-02 Signaling domain CD19 scFv Transduction Spacer IgG1 murine monoclonal marker domain Devices- G3 SIN Lenti EF1 2nd gen ITR IgG4-VH linker VL CD28tm 41BB CD37 T2A huEGFRt hinge(S) Leader sequence

Chassis- Defined combinations of T cell subsets

CAR T Cells Are Constitutively "ON"-

Severe Sx's/Pressors, Toci, Dex

Advanced Lymphocyte Engineering

II. CLINICAN CONTROLLED CAR T CELLS THROUGH REGULATED TRANSGENE EXPRESSION

e ideal system for regulating transgene expression in CAR T cells	A clinically relevant transgene regulatory system should:	Demonstrate selective and specific regulation by ligand	Stringent OFF state *	High inducibility *	Non-immunogenic	Regulation by a safe, well tolerated ligand	While other transcriptional regulatory system exits for transgene regulation, few possess sufficient number of these key attributes t permit clinical application	
È	•						•	

bioDEVICE ASSEMBLY:

Transgene Expression Rheostats For Regulated TgX Expression:

TamR Transcriptional Regulatory System

TamR-Transcription Platform- Parts |

Human Estrogen Receptor LBD Tuned For Tamoxifen Binding Human RelA Transactivation Domain

TamR-TF

Human Hepatocyte Nuclear Factor-1α DNA Binding Domain

TamR-TF Responsive Synthetic Promoter

7X huAlb promoter HNF-1α Binding Motif

Adenovirus E1b mp/TATA

Prototype described by Roscili et al., 2002

TamR Transcriptional Control System

TamR-Transcription Platform- LV Device

LV Transfer Plasmid #1

LV Transfer Plasmid #2

"Dual Packaged LV"

>15Kb Payload Capacity

TamR-Transcription Platform- Parts II

Cell Surface Barcoding Tags

Advanced Lymphocyte Engineering

TamR-LV Transcription Platform-

Performance in Primary Human T Cells

TamR-LV CAR Functional Outputs

Raji

TamR-LV tf Tuning For High Versus Low Regulated Outputs

% of maximal ZsGreen induction

TamR-tf^{high}

TamR-tf^{low}

T Cell Activation Amplifies Tam-Dependent TamR LV Transgene Expression Outputs

T Cell Activation Amplifies Tam-Dependent CAR Expression

TamR-LV Formats For Regulated Expression of TransgeneX by CAR T Cells

Advanced Lymphocyte Engineering

Summary II:

- 1. TamR-LV transgene expression regulation system displays favorable attributes for clinical application.
- 2. System has tunable features for output states (4-OHT sensitivity).
- 3. System exhibits context specific (T cell activation) positive feedback.

Time

III. Multiplexing CAR T Cell Target Antigen Recognition

Aggregate data from CHOP, NCI, Seattle suggest CD19 epitope escape loss as etiology of treatment failure in approx. 10% of relapsing patients.

STRATEGIES TO GENERATE CAR T CELL PRODUCTS WITH 2X SPECIFICITIES

Dual CAR LV's ("Adding")

EGFRt/HER2t Expression by Transduced Human CD8⁺ CTLs

Redirected CD19 and/or CD20 Cytolysis by Human CD8⁺ CTLs

Advanced Lymphocyte Engineering

BiSpecific CAR (*"Combining"***)**

Schematic of Bispecific antiCD19xCD20 Chimeric Antigen Receptor

Bispecific Anti-CD19xCD20 CAR Components:

Complete cDNA packaged into epHIV-7 lentivirus vector transfer plasmid:

Summary III:

- 1. Multiplexed antigen specificity is feasible and can be accomplished in a single LV vector.
- 2. Targeting 2 antigens on tumor cells expected to diminish antigen escape as etiology of treatment failure.

Time

IV. Control of CAR T Cell Persistence

Construction of truncated human EGFR (huEGFRt) with retention of Cetuximab binding epitope

huEGFRt can be incorporated into lenti-viral vector for co-expression with CD19 chimeric antigen receptor (CD19CAR)

huEGFRt sensitizes huEGFRt⁺ human T cells to Cetuximab mediated ADCC

Targets: ⁵¹Cr-labeled huEGFRt+ T cells;

Effectors: GM-CSF stimulated huPBMC

Mixed with 1ug/mL Cetuximab or I Rituximab ¹(anti-CD20) for 4hr

In vivo: Depletion of EGFRt+ cells

Frequency of transferred cells in blood (FACS analysis)

24h post Erbitux

24h post Rituximab

Summary IV:

- 1. EGFRt can serve as a suicide construct based on in vitro and murine models.
- 2. The efficacy of cetuximab mediated ablation of EGFRt⁺ T cells in humans is unknown.

SynBio T Cells FUTURE STATE: Version 3.0

Devices- Expression Rheostats, Sensors, Logic Gated Bio-Circuits

Chassis- Defined combinations of T cell subsets

Rebecca Gardner, MD (PLAT-01/-02 PI)) Julie Park, MD (ENCIT-01 PI) Annette Kuenkele, MD (L1-CAM CAR) Kaileen Rohr (TamR-Tg) Anne Silva, MD (spacer/bispecific) Cindy Chang (mouse models)

Paulina Paszkiewicz (Busch Lab) (EGFRt/Erbitux ablation)

Xiuli Wang, MD,PhD (human Tcm/EGFRt) Hao Hong PhD L1CAM Stephen Forman, MD

FRED HUTCHINSON

CANCER RESEARCH CENTER

A LIFE OF SCIENCE

Michael Hudechek, MD

Stanley Riddell, MD

Supported by: RO1 CA136551

COH Lymphoma SPORE SU2C/St. Baldrick's Dream Team LSDF Opportunity Grant